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1. INTRODUCTION

We discuss asymptotic forms of C}(z), L2(z), P,(La’ﬁ)(:c), the Gegenbauer, Laguerre and
Jacobi polynomials. The asymptotic behavior of these classical orthogonal polynomials
has been the subject of several investigations. The research usually concentrates on the
case that the degree n of the polynomial is the large parameter, and for all classical
orthogonal polynomials the asymptotic behavior is well established now. Inside the
domain of the zeros of the polynomial the behavior can be described in terms of ele-
mentary functions, such as trigonometric functions. In the domain where the transition
from oscillatory to monotonic behavior occurs, familiar higher transcendental functions
can be used as estimates. For example, the "first” zeros of the Jacobi polynomial can
be approximated in terms of the zeros of the J—Bessel function. In SzEGO (1958)

several classical results can be found. For Jacobi polynomials he gives an estimate of
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"Hilb’s type”, which is an approximation in terms of the J—Bessel function. In earlier
papers, however, Szegd already gave more extensive expansions for Legendre and Jacobi

polynomials, again in terms of the J—Bessel function. See ASKEY (1982).

More recent publications give uniform asymptotic expansions in larger domains for
the argument, and also more terms in the expansion. ERDELYI (1960) derived leading
terms of the expansion for Laguerre polynomials in terms of Bessel and Airy functions,
and quite recently FRENZEN & WoNG (1988) constructed complete expansions for
this class of polynomials. ELLIoTT (1971) treated the Jacobi polynomials essentially
outside the domain of orthogonallity, giving a full expansion in terms of modified Bessel
functions; in FRENZEN & WoNG (1985) a uniform expansion for the Jacobi polynomials

is given in terms of J—Bessel functions, complete with error bounds for the remainder.

As mentioned earlier, the degree n of the polynomials is usually considered as the
large parameter in the asymptotic expansions. In many existing cases, however, the
asymptotic variable includes additional parameters as well. For instance, in ERDELYI
(1960) and FRENZEN & WoNG (1988) a natural choice for the large parameter of the
Laguerre polynomial L%(z)is k = n + (a4 1)/2, although the parameter a (and hence
the order of the comparison function J,(2)) is kept fixed in their analysis. In TEMME
(1986) three different cases are considered for large values of k. Depending on the value
of z and the size of a/n, a Bessel function, a Hermite polynomial, or an Airy function

is used for the Laguerre polynomials.

In the case of Jacobi polynomials PP (z), a convenient choiceis Kk = n+(a+ 8+
1)/2, see FRENZEN & WONG (1985). See also ELLIOTT (1971) and NESTOR (1984).
In this paper we consider the same asymptotic variable x, now with the possibility that
a and /or S dominate n, and with z inside the domain of orthogonallity. We use the
Gegenbauer polynomial and the Laguerre polynomial as new estimates for the Jacobi

polynomial.

Some of the results on orthogonal polynomials in this paper follow from earlier,
sometimes more general, results in the literature. The Laguerre polynomial is in fact
a special case of the Whittaker, or confluent hypergeometric function. For this class
of functions many recent results are available, for instance, OLVER(1980), and very
recently DUNSTER(1989). On the other hand, the Jacobi polynomial and the Gegen-
bauer polynomial are special cases of the Gauss hypergeometric function, for which class

rather few interesting uniform expansions have been investigated.

Recently, other investigations on orthogonal polynomials with several large pa-

rameters have been published, but the approach is quite different from ours. LI-CHEN
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CHEN & ISMAIL(1989) investigated the asymptotics of P{*T*™#*") () as n — o0, and
a,b,a,0,z remain fixed. The approximants are in terms of elementary functions, and
the approach is based on Darboux’s method applied on a generating function. They also
considered the Laguerre polynomial L&*+2"(b + zn) for large values of n. Asymptotics
of Jacobi and Laguerre polynomials with similar arrangement of parameters occur in
work on incomplete polynomials of SAFF & VARGA (1979), MOAK, SAFF & VARGA
(1979), and MHASKAR & SAFF (1984). In the second paper the distribution of zeros
of that type of Jacobi polynomial is considered.

In the present approach, the estimates of the orthogonal polynomials are obtained
by using differential equations, and Liouville Green transformations thereof. This tech-
nique is extensively developed by Frank Olver. Some of the results follow from his
earlier work on, for instance, Whittaker functions. The proofs of the new estimates
of Jacobi polynomials will be given elsewhere. Another interesting problem is how to
obtain similar estimates by using integral representations of the polynomials. We intend

to consider also this point in future publications.
1.1. The Liouville-Green transformation

The techniques used in this paper are based on the Liouville-Green (LG) transformation.

Starting point is a differential equation of the form
W = [*p(a) + ()W, (L1)

defining the orthogonal polynomial, where k is a large parameter, a simple function
of the degree and other parameters, but independent of z. Formally we proceed as
follows. A transformation of both the dependent and independent variable is introduced
by writing

W(z) = vz w(f), (1.2)
where § = £(z), and the dot indicates differentiation with respect to £&. Then (1.1)

becomes
W = [k?3°p(z) + ()]w, (1.3)

where
&L (1.4)
dg* V&

Depending on the nature of the function p and on the asymptotic phenomena to be in-

Y(€) = #2q(z) + VE

vestigated, the function £(z) is defined by replacing 22p(z) by a simple rational function
r(€). That is, we write
#*p(z) = r(€) (1.5)
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and the new differential equation becomes

b = (K7€) + H(E))w. (1.6)

The function r(£) is chosen such that it mimics features of p(z) that are essential for
the asymptotic behavior of W(z). As a rule, when we take ¢ = 0, (1.6) reduces to
the differential equation of a known special function that plays the part of a basic

approximant in the asymptotic estimate.

For example, for the orthogonal polynomials on the interval [—1,1], p has two
simple zeros 1,z2 in this interval, and p is negative in (z1,z2). Then the zeros of
the orthogonal polynomial occur in the same interval. Under the influence of some
parameters we may have the situation that z; — z;. When no other zeros or poles
of p are nearby the interval (z1,z;), one may consider for that particular case the

transformation (1.5) in the form
#p(a) = € - p’,

where p depends on z7,z5. When r(§) = £ — p* and ¢ = 0, equation (1.6) reduces
to the differential equation for the parabolic cylinder function. Under further special

circumstances, this function reduces to a Hermite polynomial.

In this paper we transform the differential equations defining the classical orthog-
onal polynomials Pna’ﬁ)(:c), L3(z), C(z), the Jacobi, Laguerre and Gegenbauer poly-
nomials, to a form in which another orthogonal polynomial acts as a basic approximant,
for instance a Hermite polynomial. In these cases, the z—domain is the complete do-
main of orthogonallity. We also mention estimates in which other comparison functions
occur, and which describe the transition of the oscillatory to the monotonic regions. In

all cases we concentrate on real values of the parameters.
2. GEGENBAUER POLYNOMIALS

The Gegenbauer polynomials, or ultraspherical polynomials, can be defined by the gen-

erating function

(1-20242")"" =) Clr)z", —~l<z<l, |z<L (2.1)

n=0

An explicit representation is

[n/2)
1 (_1)kr(7+ n_k)(2z)n-—2k

G = 53 2 " kl(n = 2R)]

(22)
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where |m| is the integer number satisfying |m| < m < [m| + 1, with m € IR. These
polynomials satisfy the differential equation

(1-2%)y" - (27 + D)zy' + n(n + 29)y = 0. (2.3)
A simple transformation
W(a) = (1 - ?)PT0/4C3 () (2.4)

gives for W the equation

2+ 4y — 492 4 22
2 " 2 i -
(L= W'+ [(n+4) + ) [w=o.
This can be written in the form
2 2 2
.2 T — (to T + 3
W"._.K (1—.’1:2)2W_ 4(1__2:2)2 W, (2.5)
with ) .
K = n.{.n/, xg = -’L:_(DL. (2.6)

K2
We assume that v > 1/, and n = 0,1,2,...; zo is the positive number defined by the
above equation. We have zo € [0,1]. For the asymptotic problem we assume that  is
large.

Especially interesting is the behavior of the polynomials when z crosses the values
+zo (turning points of (2.5)) and %1 (singular points). When ¥ >> n the turning points
(and all zeros of the Gegenbauer polynomial) tend to zero and coalesce. When n >> 7
the turning points coalesce with the singularities at +1. In both cases, the asymptotic
behavior of the polynomials cannot be described in terms of elementary functions.

The Gegenbauer polynomial is a function of three variables. In the asymptotic
problem we try to find approximating functions of at most two variables. This gives a
proper reduction of variables, as pointed out by OLVER (1975-8). It is not possible to
construct one approximation of two variables with which we can describe the behavior
of the polynomials as k — oo, uniformly with respect to z on the entire real axis. For

the transition near z = +1 we need a J—Bessel function as approximant.
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2.1. Estimation in terms of a Hermite polynomial

Consider as a simpler form of (2.5), especially if & is large and z is bounded away from
+1, the equation

u" = k¥ (2? - 2})u, (2.7)

with solution
uw(z) = Dy(av2k), 2w+1=krzd,

where D, () is one of the Weber parabolic cylinder functions. This function is related

to the Hermite polynomial. We have for integer values of n
Ha(z) = 2"2e7 12D, (2v2), (2.8)

where the Hermite polynomial is given by

A o n—2k

H(z) = n! ;) m(zx) . (2.9)

Observe that when n << 7 the quantity v behaves like v = n + O(y7!). So it ap-

pears that the "first approximation” (2.7) does not exactly yield a Hermite polynomial.

In this section we construct a first approximation to (2.5) based on a LG transfor-

mation, which exactly reduces to the equation for the Hermite polynomial. Then, by

using the theorems of OLVER (1975-A), the asymptotic estimation of the Gegenbauer

polynomials can be described in more detail. This gives an asymptotic interpretation
of the well-known limit relation

lim 772C3(a/y/7) = — Ha(z), (2.10)

y—0 n!

which can be verified by considering (2.2) and (2.9), and the limit of each coefficient of
the Gegenbauer polynomial.

The points 2o are two turning points of (2.5). By hypothesis z¢ is bounded away

from the singularities £1. In this subsection the conditions on z, zo read
z € (~1,1), =z € [0,b], with b fixedin (0,1).

The condition zo < b implies
v % + n\/l_—_bf
T1-V1-8
Usually, n is considered as the large parameter; from the above condition and £ — o

it follows that ¥ — 0o, and that n may be large, but not larger than O(7).



Polynomial Asymptotic Estimates 461

We now transform (2.5) into an equation with as dominant part an equation of the
form (2.7). Considering the basic steps outlined in (1.1) - (1.6), we perceive that the
appropriate LG transformation reads

d 2% — 12
o - () = =it W)= VEu(), (2.11)

where the dot indicates differentiation with respect to 7, and the non-negative number

p is defined by
/7__ 2
/ Vvpi-nt dn—/ hd 2.
-p

—zo 1——:32

Evaluation of both integrals yields

1/27rp2 = 7r(1 ~4/1- z%).
It is convenient to introduce parameters v, 4 by writing
To =sinp, v=-cosu, wé€]l0,sr]. (2.12)

Then we have, using (2.6),

7
p= ":1 = 2sin(1an). (2.13)

The relation between n and z is one-to-one, with the points ~z¢ and zo corre-

sponding respectively to —p and p. On taking the positive square root in the first of

(2.11) and integrating, we obtain

/ V72 - p? dn-/ ”z—xodz ~1<z<-12¢

1- 32
/ Vp?— 72 di / Y _Izdz zp<z<z
- n= sy THL0 >4 40
—p —zy 1 E
7 T [37 _ 2
/ NG dﬁ:/ VI "X 4z, se<z<l.
» 0w 1—Z
From these relations it follows that 7 is an increasing function of z with n = —oo and
+00 corresponding to z = —1 and +1, respectively.

If 2o # 0, the relation between z en 7, defined in (2.11) is given by
() =p<n<p, —zo <<

T
1 [n\/pZ —n? + p* arcsin %] = arcsin a:i — v arctan ——-—L—E—; (2.14)

0 -z
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(i) n2p, zeLz<l:

22 — 12
s [77\/772 -p? - pza.rccoshg] = —arccosh— +'uarctanh—:67f£; (2.15)

Zo

(i) n < —p, —1<o < —200
- - Jz? — 2
=1k [77\/ nt—p? + pza,rccosh-—;’-)] = —arccosh-;:E -v arctanh——z—u—xﬂ’—. (2.16)
0

Alternatively, when z¢ = 0, so that p = 0, we find

1on? = =1hIn(1 - 2%), or n=+/=In(l - z?),

with sign(n) = sign(z). Whether or not z¢ = 0, the differential equation (2.5) transforms
into the form (1.6):

W = k2(n? - pH)w + ¥(n)w, (2.17)

where

2 2
Pl 1
vin) = z4(1—z2)2+\/;dn2\/§'

By carrying out the differentiations by means of the first of (2.11), we arrive at the
formula

3172 +2p2 (n2_p2>(1_$2)

MG A R

(4w2zg - 32% — 2z% + zg).

The right-hand side is to be replaced by its limiting form when 7 = *p. It follows
from Olver’s theory that v is a continuous function of n € IR, but for this special
case we can prove that nis an analytic function of z € (—1,1) and zo € [0,1), and
that ¢ is an analytic function of n. For instance, at » = 0 and as 2o — 0, we have
%(0) = -2 2§ + O(ay).

We need to know the asymptotic behavior of z() as n — +oo. From (2.15) we
derive that

2
Yan® = ap? = o’ 111(‘;') +0(17*) = YavIn(2 cot? p)

— arccosh(

L) Yo In(l - )+ 2 'Lfga ~2)+0[(1 -]

Zo

as 7 — +00, with a similar relation with n — —oo. It follows that

1-|z| = c(z'o)|77]”2/”e-”2/"[1 +0o(1)], as 7 — oo, (2.18)
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where ¢(zq) does not depend on 7, and is given by

p?/2 + vin(2 cot? p) — 2arccosh(1/zo) + p? In(2/p)

¢(zo) = exp — (2.19)
Further,
v =0(3m) neR,
uniformly with respect to z¢ € [0, ].
2.2. Identification of solutions
As remarked above, the solutions of
o = K2(n® — p*)wo (2.20)

are parabolic cylinder functions. By considering the behavior of the Gegenbauer poly-
nomial and that of the two solutions of the differential equation for parabolic cylinder
functions, it follows that only the function D,(z) should be used as approximant. As
in (2.7) we have, using (2.13)

wo(n) = Dy(nV2k), 2v+1=kp?=2n+1.

It follows that the parabolic cylinder function reduces to a Hermite polynomial. Using
(2.8), we obtain as a solution of (2.20)

wo(n) = 2‘"/26_"’72/211,1(7)\/;).

We obtain for the complete equation (2.17)

w(n) = 2722 H, (ny/E ) + £(n).

Since our function ¢ of (2.17) satisfies the conditions of Theorem I of OLVER (1975-4,
§6), we can infer that |¢(n)| is small compared with |wg(n)|, except in the neighborhoods
of the zeros of this function, where |¢(7)| is small compared with the envelope of |wo(7)].
This conclusion holds uniformly with respect to n € IR, z¢ € [0,b]. It is also possible to

construct bounds for |¢(n)|. In terms of the Gegenbauer polynomial we obtain
C(z) = AY(1 - 2?)~Cr VA F e [ H (n/R ) + €], (2.21)

where A7 does not depend on z. Again, || is small (in the sense described above) when

K — o0, uniformly with respect to = € (—1,1). By using

cr(1) = (—%)1 lim 2" H,(z) = 2" (2.22)

Z—00
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and the result in (2.18), we obtain
AT = 7 [2e(mo)] M A2 kT2 (29) 0 /.
Evaluating this expression by using (2.19), we can write
A7 = kA Py Y (y 2 = 14

with Kk = n + 7.
It is not difficult to verify that (2.21) contains (2.10) as a special case; from Olver’s

theory it follows that £ tends to zero in the limit considered.
2.3. Other asymptotic forms for large v and/or n

When in (2.5) z runs in a domain that contains both the points z¢ and 1, and =z
may coalesce with the point 1, the equation resembles a particular form of the Bessel

equation. For this case we can use an LG transformation of the form

2oLy (m2 - a3

12 \dz) T A-2) W(z) = V-2 w((), (2.23)

where v is defined in (2.12), that is

v=14/1-2} =1—_7c-1—/2, K=n+7,

and the dot indicates differentiation with respect to (. The point & = z is transformed
to ¢ = v%, and the point z = 1 to ¢ = 0. The derivative # is negative in the domain of
interest. Again, & is large, and v > /.

The relation between z and ¢ can be obtained by integrating the first of (2.23).

With these transformations the Gegenbauer equation (2.5) is transformed to

2

. 2V_____1__ _____1___ #(¢)

w_[m (4(2 4C) 4(2]10-1— ¢ w, (2.24)
where ( ) )

() .o z*+3 - d? 1 1
SR (EED A Ve AR T

The function ¢ is analytic in a domain containing both the turning point { = v? and
the singular point { = 0.It can be verified that

#()=0((™?), as (- —co.
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The solution of (2.24) can be put in the form w(¢) = /T Jy-1/2(kv/C ) + €(¢). For
the Gegenbauer polynomials we obtain

CA(e) = BL (1= 2®) RV [T, 1 a(kv/C) + €(O)], (2:25)

where B! does not depend on z. This number follows from the behavior of the J—Bessel
function at ( = 0 and C(1) = (27)n/n!. We also need the number ¢; in z =14 ¢, +
O(Cz) as ¢ — 0, that is, ¢; = —=1/(1 + z3). So we obtain

BY = (_21%)22%1/2(_61)7/2-1/4K1/2—7r(7 + 14).

n

From Boyp & DuNsTER (1986) it follows that (2.25) provides an asymptotic estimate
of the Gegenbauer polynomial with K — 0o, v = O(n). The estimate holds uniformly
with respect to z € [—zo + §,00) (and also in larger domains of the complex plane).
Upper bounds for |¢(()| follow from the cited reference, also for an estimate involving
more terms in the expansion. Since the Gegenbauer polynomial is symmetric with
respect to z, a similar expansion hold in the z—domain containing the points —zo and
-1.

A third expansion is needed to describe the behavior for z > 1 and n = O(7).
As explained in OLVER( (1974), for this case an expansion can be given in terms of

elementary functions.
3. LAGUERRE POLYNOMIALS

The Laguerre polynomials have the explicit representation
n k
_ o (nt o) (=2)
L@=> (n - k) o

We assume that the parameters are real with n > 0, @ > 0, z € IR. For large values of
k=n+1p(a+1) (3.1)

the asymptotic behavior can be described in terms of the Hermite polynomial and the
J —Bessel function, just as in the previous section. In this section we summarize the
recent results obtained in TEMME (1986). The results also follow from earlier results
in the literature for Whittaker functions. The relation between Laguerre polynomials
and Whittaker functions is

a “1n-a z I\a+n+l)—a 2z
L3(z) = (——;!l—z (at1)/2¢ /Zwﬂ‘#(z)zmz (D222, W(2),  (3.2)
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with & as in (3.1) and g = /2. The functions M, ,(2), Wx,u(z) are solutions of

Whittaker’s equation , ,
d 1k —-1/4
Vo[L-Ey ﬁ__/_]y,

P2 VP 22

A first transformation z = 4z yields the differential equation

4(z — z1)(T — T9) 1
"w_ .2 —
Wh=x [ z? 4z2]W’

where

1-v1-172 1+vV1-72 o
H=—, = —(F——, T =7-
2 2
with solution

W (z) = a0t/ 2% 2 (4k7).

(3.3)

(3.4)

(3.5)

The z—zeros of the polynomial L2(4xz) occur within the interval [z;, z3]. When

a >> n the parameter 7 tends to unity, and the turning points z1, z2 are close together.

This case is described by a parabolic cylinder function, which reduces for this

particular

case of the Laguerre polynomials to a Hermite polynomial. When 7 — 0 the zeros of

L%(4kz) are spread over the z—interval (0,1), and a J—Bessel function is used in this

case.

3.1. Estimation in terms of a Hermite polynomial

The LG transform is defined by

z2

where the dot indicates differentiation with respect to 1, and p is given by
p=V21-7).
The relation between 7 and z is one-to-one, with
7(0) = =00, n(z1) =—p, n(z2)=p, n(+00)= o00.
The differential equation (3.4) transforms into
b = k(1 = oo + $(n)w,

where

3 +20° z(n’ = p)
4(n? —p*)?  64[(z - z1)(z — z2)P®

Y(n) =

(3.7)

(42 + (1 - 4H)z + Tz).



Polynomial Asymptotic Estimates 467

We have

¥(n) = O( n€eR,

1
772 +1 ) ?
uniformly with respect to 7 € [rg, 1], where 7 is a fixed number in (0,1).

By identifying solutions, and considering the asymptotic behavior of the Laguerre
polynomials and the Hermite polynomials, we arrive at the estimate

—1)\n n
L%(4kz) _( n!) 2—a—n/2—3/4n-a/2~1/4z—or/2(n’ + ae"“ 1/2) +a+1/2 08
<=5 2\ [E [Ho(ny/R ) + €]

This representation has an asymptotic interpretation as k — oo; in that case |£] is small
(in the same sense as in (2.21)), uniformly with respect to z € (0,00) and t € [rg, 1].
The latter gives for o the condition

70

a2

> 1_7_0(2n+1)

with 75 any fixed number in (0,1).
3.2. Other asymptotic forms for large a and/or n.

In TeMME (1986) details are given for two other asymptotic forms of the Laguerre
polynomials, one in terms of the J—Bessel function, and onein terms of an Airy function.
The Bessel function is used to describe the asymptotics of LS (4kz) for K — oo, uniformly
with respect to a € [0,n1n] and = € (—00,20], o = foz1 + (1 — §o)z2, Where z1 5 are
given in (3.5), ny is a fixed positive number, and & is a fixed number in (0,1). The
Airy function is used to describe the asymptotics uniformly with respect to a € [0,nsn]
and r € [z3,00), r3 = £321 + (1 — &)z2, With n; a fixed positive number, and &3 a fixed
number in (0,1).

Both forms follow from DUNSTER (1989), where the results are obtained in the
setting of Whittaker functions. A fourth form can be given in terms of elementary
functions; it is uniformly valid with respect to z < 0 and « € [n3n,c0), where ng3 is a

fixed positive number.

In this way we have four asymptotic estimates in overlapping domains of the three
real parameter domains z € IR, n > 0, @ > 0. It is not difficult to verify that o may

assume negative values, as long as kK — oo.
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4. JACOBI POLYNOMIALS

The Jacobi polynomials PP )(z) are solutions of the differential equation
Q-2 +[(B-a)— (@+B+2z]y +n(n+a+B+1)y=0. (4.1)
In fact this is a differential equation of hypergeometric type, the relation with hyperge-

ometric functions being

1-—
Pgasﬂ)(z)z <n:a>F(-n,a+ﬁ+n+ 1;a+1;—2—£)7 (42)

which gives the explicit representation

a, . Ta+n+l) L (m\T(a+B+n+k+1) -1k
P ﬁ)(m)—n!I‘(a+ﬂ+n+1)kZ=o(k) Tarken 20

The following normalization and symmetry relations hold

PP)(1) = (n . a), P{P)(—g) = (~1)" PP (z). (44)

The Gegenbauer polynomial is a special case of the Jacobi polynomial:

(2M)n  pv-1/24-1/2)
Y - PY Y . 4.5
1) = i B (2) (45)
The function
W(z) = (1-z) D21 4 )(P+1/2 pleb) () (4.6)

satisfies the equation
wr = 9#,2.6,n)

Tl (4.7)

with
Q(z,a,8,n) = £} (z® — 1) + 1oz(a® - %) + 1f2(a® + B%) = a(3 + 2%),

k=n+(a+p+1)/2. (4.8)

We factorize the function € in the following way

Q(z,0,B,n) = KX (z — z1)(x — 2) — Y4(3 + z?), (4.9)

where

B - & \[[462 (o + B)?] [452 — (e — BY?]

Ty12 =
4K2 K
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where 27 has the + sign. It is not difficult to verify that this factorization yields the
same equations for the Gegenbauer polynomials in the case that o =8 = v~ 1/2.
We consider the case where the parameters «, 3 are positive, and the independent

variable z is real. The parameter & of (4.8) is large.

The numbers z; 5 satisfy —1 < z; < 75 < 1. Several limiting cases of these numbers

are possible. To describe some of the phenomena, we introduce

_a+p 5_a~ﬂ
T ook ook

Then we can write
Ty =—0f+ /(1 -02)(1-62),
and we have the following cases:
- when n >> a+ f, that is, 0 — 0, then z; — -1, 29 — +1;
- when a + 8 >> n, that is, 0 — 1, then z; and z, coalesce at —§;
- when a >> (3, that is, § — 1, then z; and z, coalesce at —o;
- when 8 >> «, that is, § — —1, then z, and z, coalesce at o.

Note that the collisions may happen at +1 when 8 >> a >> n, and at —1 when
a>>p0B>>n.

In the following subsections we give the setup of two LG transformations for ob-
taining asymptotic estimates of the Jacobi polynomials in terms of the Gegenbauer
polynomials and of the Laguerre polynomials. Both forms seem to be new, but the
proofs of the asymptotic nature of the approximations will be elaborated elsewhere. We
demonstrate the usefulness of the estimates by comparing the zeros of the Jacobi poly-
nomials with transformed zeros of the LG approximants for these cases: the Gegenbauer

polynomials and the Laguerre polynomials.
4.1. Estimation in terms of a Gegenbauer polynomial

We define a Liouville-Green transformation for (4.7) by writing

2_ 2 dnN2 o — R ‘
(71]-7;/2))2 (ZZ’;) =(—T§E)‘(;T)T1—), W (z) = vz w(n), (4.11)

where the dot indicates differentiation with respect to n, and p is the non-negative
number defined by

/ \/P_:—_?T‘h7 /z’\/xz—x)fE*itl)

1— 22
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Evaluation of both integrals yields

T(1=V1=p2) =7[1 = /(1= 21)(1 - 22) — o/ (1+ 21)(1 + 22) |.

The square roots in the right-hand side can easily be evaluated; using (4.10) we obtain

(1—@1)(1—12) = %, \/(1+$1)(1+$2) = g (4.12)

It follows that

JIoF =2tf (4.13)

2K

The relation between 7 and z is one-to-one, with the points z; and z; corresponding

respectively to —p and p. For the integration of the first of (4.11) we introduce the
following notations

zo = p(zy —21), Z=1lp(z1+x2), p=sinp, v=cosy,
arccos[(z — &)/zo], if 21 <2 < z9;
T = { arccosh{(z — T)/zo], fz9 <z < 1; (4.14)

arccosh|[(Z — z)/zo], if -1 < 2z < z1.
We also use

Ve —z)/(z —21), ifz1 <z <ay;

R=1{ \/(z—z2)/(z —21), ifza<z <

Vier —z)/(z2 —2), f-1<z<z.
Integrating the first of (4.11) we obtain when zy # z,, that is, zo # 0
(1) =p<n<p, Tzl

arcsinﬂ —v arctan-——;p-——z— ~lhr(l+v)=
N (4.15)
— T —_ .é arcta,nn_(lizg_)_ — g arctan .’i(_l__:ﬁl-
K BR K aR
(i) p<n<l, z<z<l:
72 _ 2
- arccoshg + l/a,rctanh——ﬂ——/l—- =
v
(4.16)
1
_T+:‘L_ﬂ Bln K(1+z2)+ BR +aln k(1 - z3)+ aRy
4

k(1 +z2) - GR 5(1 -2y} — aRl’
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(i17) 1< np< —p, —-l<z<2;:

n vn
— arccosh— + varctanh————-— =
g e 4.17
—T——l—-[ﬂlnﬁ(1+xl)+ﬁR——alnn(l‘ml)+aR (40
2K k(1 +z1) - BR k(1 —-z1) — aRl

Alternatively, when z; = z3 = Z, that is, zg = 0, so that p = 0, we find for
Inl <1, 2] <1
1—z 1+2z
1+ 1)l
A+ D7
with sign(n) = sign(z — Z). Whether or not zo = 0, the differential equation (4.7)

transforms into

In(1-7*)=(1-%)ln

1-2z

.o 2(772"P2) 772+3
v= [K 1-72)? - 4(1 - 772)2] w + p(n)w, (4.18)
where - o -
_ g 43 ozd” 1 Tt

For identifying the solutions we need to know the asymptotic behavior of z(n) as

1 — 1. It is straightforward to verify from (4.16) that
l—z=(1-n)e*/CIC[ 4o(1)], as n1l,

where C' is not depending on 7 , and is given by (¢ is given in (4.14) with z = 1)

¢ = exp| - 2L 4 21 SOIF RN 20) + VTLF 20 2)
o JT+z)1-21) - /I +z)(1 - x2) (4.20)
i 2=2IC2) (1= 4 v m)))

When 1 = 0 the solution of (4.18) is a Gegenbauer polynomial (see (2.5)); that is,
wo(n) = (1= ) FVAC (),
where v = (@ + 3 + 1)/2. We write for the complete solution of (4.18)
w(n) = (1= 7*)EVEC (1) +e(n),

with the expectation that £(n) is a small contribution as Kk — co. Using (2.4), (2.5) we

obtain the asymptotic estimate

P (5) = AZOVE (1-2) 4D/ (L 2)” CHO/2 (1) O DACT () (), (4.21)
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where A2P can be derived by computing the behavior of the polynomialsatz =1,n=1
from (2.22) and (4.4). The result is

A28 = 9B/ gal? [[20 T@yI(ntatl)
a+ B L(a+1)I(n+27)

When a = £, the functions ¥,¢,& vanish identically; the mappings described in (4.15),

(4.16), and (4.17) reduce to the identity mapping ¢ = 7, and the relation between the
polynomials is then as in (4.5).

4.2. Estimation in terms of a Laguerre polynomial

A known limit is
lim PP (2z/a — 1) = (=1)"LE(2).

We give a new asymptotic estimate that includes this relation. We concentrate on an
estimate that can describe the behavior of P,(lo"ﬁ)(a:) for z—values in a domain that
contains the singular point z = —1 (a double pole) of (4.7) and both turning points
1,2 defined in (4.10) and located in (—1,1). Recall that both turning points coalesce
with the pole when @ >> 8 >> n. Especially this situation can be described by the

Laguerre polynomial.

We define an LG transformation by writing W(z) = v w(n) and

4(n=p1)(n = p2) (éﬁ)z _(zmm)(z—m) (4.22)

n? dz (1-22) °

where the positive numbers p; 2 are to be determined. A first condition reads

/”x/(pz—n)(n—pl) dy =
/‘ \/ mg—a: (z—11)

1—22

Evaluation of both integrals gives

2n +1
2k

p1+ p2 = 2/p1pz = (4.23)

It is required that the relation between 7 and z is one-to-one for z € (—o0,1), with
the points z, and z; corresponding respectively to p; and p,. We also request that the
mapping is regular at the corresponding points £ = —1, n = 0. A necessary condition
follows from 7/(1 4+ ) = O(1) as £ — —1. Assuming that

dn
dr 14z

—L, as z— -1,
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we obtain from (4.22) the second condition

smm =2, (4:24)

where we used the second of (4.12). From those two conditions p; 2 can be determined.
We have

2/P12 = V(2n+1+28)/2x £+/(2n+1)/2x,

where p; has the + sign.

The integrated form of (4.22) for the location of the parameters p; < 1 < pa, 71 <
r < 24 reads

. (P14 p2)n—2p1ps . PLtp—27
2S5 — 2./p1p2 arcsin - + po)aresin ——= 7 =
s n(pz — p1) (b1t 22) P —p1
B K(ltz) o k(l—z9) ,2n+1

~T -2 arct = arct - 1
— arctan 7R - arctan —— ( " )7,

(4.25)

where S = \/(p2 — 7)(n — p1) and the parameters of the right-hand side are asin (4.15).
The LG transformation (4.22) transforms (4.7) into the differential equation

W= [Ii2 4("7 — Pln)z(n - p2) _ &_:If]w + p(n)w, (4.26)
where
win) = -yl L]

ey YV E T

When 1 = 0 we denote the solution by wq. This function can be written in terms
of the Whittaker functions, just as the solution of the differential equation in (3.4), but
now with parameters p; o satisfying (4.23) and (4.24). To obtain the proper form of the
solutions, we transform the above differential equation (with ¢ = 0) into (3.3), with
4kn replaced with z. Then we obtain

d%y

k m2—1/4}
P Vi v

1
4 22
with solutions the Whittaker functions Wi m(2), Mi m(2), with

1
k=K(P1+pz)="+ﬁ; , m=25/p1p2 =P

It follows that when 9 = 0 a solution of (4.26) is

wo(n) = n?2e™21LB(4kn). (4.27)
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We write for the complete solution
w(n) = nPlre=2*1LP (4kn) + £(n),

with the expectation that £(n) is a small contribution as K — co. We obtain an asymp-

totic estimate of the Jacobi polynomial in terms of the Laguerre polynomial
P (@) = BPVE (1 - o)+ (1 4 2)~ 40/ 2P 2= 212 (4xm) + (n)], (4.28)

where BZ# can be derived by computing the behavior of the polynomials at z =
—00, ) = —00.
We expect that the above approximation holds for K — oo, uniformly with respect

to z € [~00,1 — 6], and 21,29 € [-1,1 — 6], with § a small fixed positive number.
5. NUMERICAL VERIFICATION BY COMPUTATION OF ZEROS

For given values of n,a,3 we have verified the asymptotic estimate (4.28), where the
relation between 7 and z is given in (4.25). We computed the zeros z,, m =1...n of
the Laguerre polynomial L?(z), giving nm = zm/(4K), m = 1...n. By inverting (4.25)
we obtained z,, = z(7,), and we compared these values with "exact” zeros 2'9 of the
Jacobi polynomial Pna’m(x). In Table 5.1 we show for n = 10, 8 = 5.5 and several
values of a the corresponding number of correct decimal digits in the approximation of

the zeros. That is, we show
logyo |288) — 2], m=1,2,...10.
Table 5.1. Correct decimal digits in the approximations of zeros of Pl(é"s's)(z)

o 1.0 25 5.0 10 25 50 75 100

m

1 43 45 47 50 56 63 6.7 70
2 41 42 44 47 53 6.0 64 6.7
3 39 40 42 45 52 58 62 6.5
4 38 39 41 44 50 56 6.1 64
5 3.7 38 40 43 49 55 59 63
6 36 37 39 42 48 54 58 6.1
7 36 3.7 39 42 47 53 57 6.0
8 36 37 39 41 47 53 56 6.0
9 36 37 39 41 46 52 56 59
10 3.7 38 40 42 46 51 55 58
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The values of z,, and zgﬁ) are obtained from a numerical procedure that generates
the zeros by computing the eigenvalues of a tri-diagonal matrix that corresponds with

the recursion formulas of the polynomials.

From the table it follows that the zeros near = —1 are slightly better approxi-
mated, but that in general the approximations are uniform with respect to m. A similar
table for the asymptotic estimate (3.8) is given in [18], showing the same sharp results.
We also used the numerical verification for the asymptotic estimates (2.21) and (4.21),
again with satisfactory results.
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